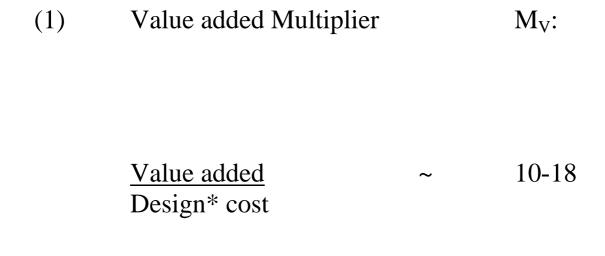
New Products, Improved Processes –

Real Jobs


by

S F Bush

University of Manchester Institute of Science and Technology (UMIST)

25th November 1997

The Manufacturing Multipliers

(2) Job Creation Multiplier M_L :

<u>Self-sustaining jobs (man years)</u> ~ 20-40 Design* effort (man years)

* Design of product and production plant. Excludes research costs.

Solow (Nobel Prize 1987)

Of real growth (1929-69):

Technology contributed about60%

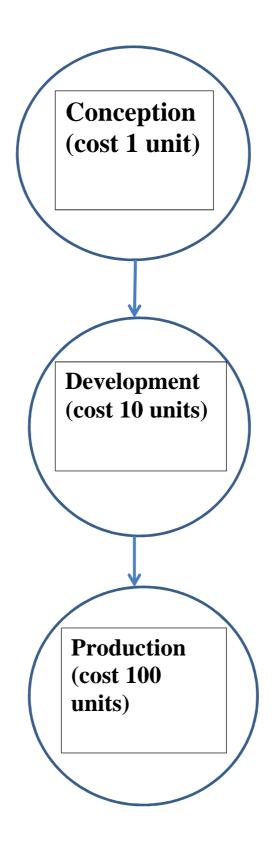
Labour	••	••	••	••	••	••	••	••	20%
Capital	••	••	••	••	••	••	••	••	20%

Japanese Ministry of International Trade & Industry (1986)

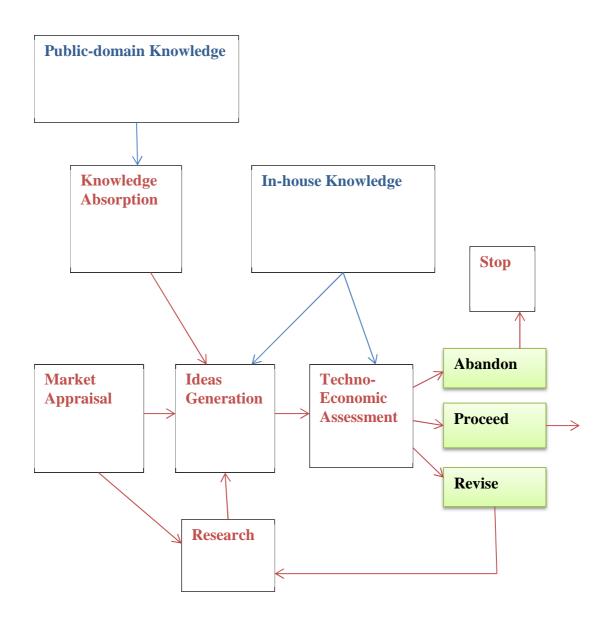
Britain contributed about 25% of the technological ideas used by Japanese Industry (1945-83).

Industrial R&D in Large Companies:

The International Position

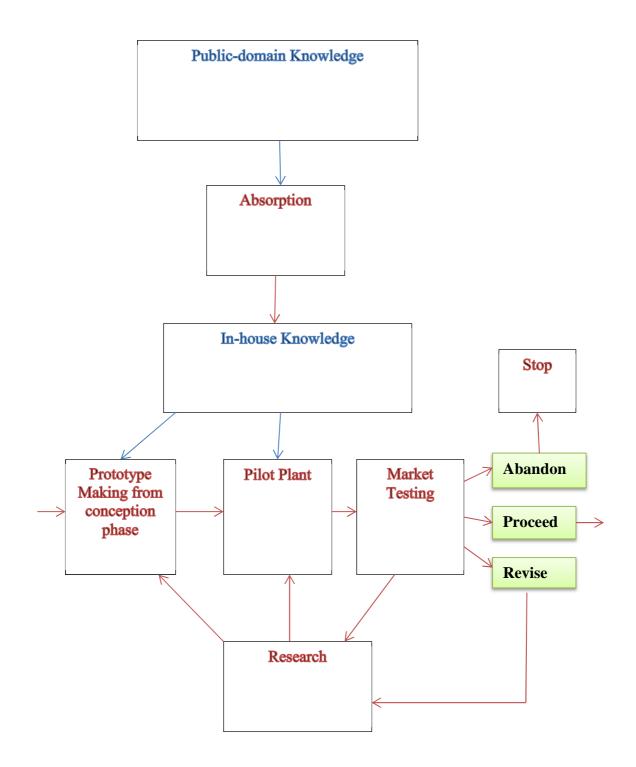

Country	Industry	<u>US patents pa</u> R&D \$M pa	<u>Exports pa</u> R&D pa
UK	Chemicals	1.6	16
Germany	Chemicals	1.8	18
Italy	Chemicals	1.6	23
Switzerland	Chemicals	3.5	17
Japan	Chemicals	2.1	9.3*
UK	Cars	1.0	20
Germany	Cars	1.4	37**
Italy	Cars	0.3***	27
Switzerland	Cars	_	-
Japan	Cars	0.6	19

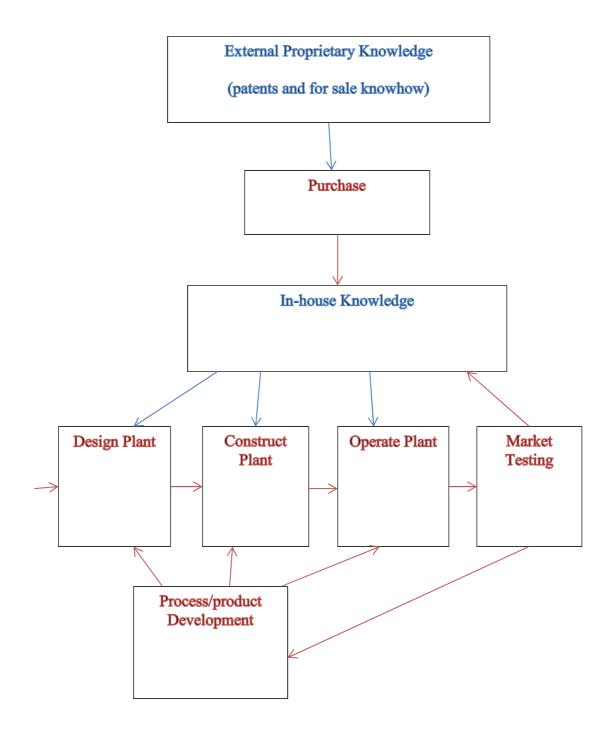
* Reflects relatively poor <u>research targeting</u>


** Reflects effects of production scale

*** Reflects concentration on process/product development

The New Product Generation Process: Rule of 10s


New Products: Conception Phase


Key:

Knowledge Information flow Decisions

New Products: Development Phase

New Products: Scale-up Phase

There is a continual process of cycling round the loop to maintain competitiveness of products and processes.

Innovation Problems for Small and Medium-sized Enterprises*

(1) The <u>Development phase</u> is often beyond their means.

(2) They lack the requisite effort for the <u>research and</u> <u>design</u> activity.

(3) They have little or no experience of managing the three phases as one process

 * Small: usually under £5 million turnover or fewer than 50 employees.

SME: usually under £30 million turnover or fewer than 500 employees.

Schemes to help SMEs

(A) <u>National</u>

Teaching Company Scheme (DTI/EPSRC)*

Engineering Doctorate (EPSRC)*

SMART (DTI)**

LINK (DTI)*

(B) Local/Regional

Business Links

Business and Innovation Centre (BICs)

Training and Enterprise Councils (TECs)*

Technology Networks

- * Not only for SMEs, but SMEs strongly encouraged
- ** Only for small enterprises

What the Schemes do

(A) National

Scheme	Activity	Cost
Teaching company scheme (DTI/EPSRC)	Process & Product Development	Approx £80K over 2 years split 50:50 Company:Scheme
Engineering Doctorate (EPSRC)	Research, Process & Product Development	Approx £80K over 4 years split 20:80 Company:Scheme
SMART (DTI)	Feasibility (TEA) plus some development	£45K per project split 25:75 Company:Scheme
LINK (DTI)	<u>Precompetitive</u> Research for a group of companies	Up to £1.5 million per project split 50:50 Companies:Scheme

What the schemes do

(B) Local Regional

Scheme	Activity	Cost
Business Links	Advice: 1 Business Advisors 2 Design Consultants 3 Technology Counsellors	Free to Companies
Business and Innovation Centres (BICS)	Market Appraisals Advice: 1 Financing 2 Some Technology	Around £400 per day charge to Company
Training & Enterprise Councils (TECS)	Further Education and training courses. May own BICs	Free to most individuals

North of England Plastics Processors' Consortium

NEPPCO

Number of Member Companies	71
----------------------------	----

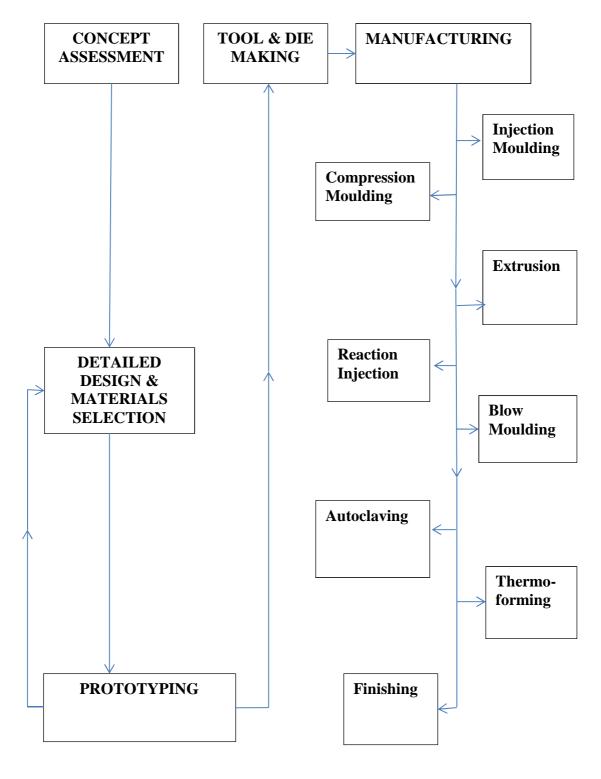
Approximate aggregate number of employees 4000

Approximate aggregate turnover£250M

Integrating the complete manufacturing chain from raw material to finished product

NEPPCO

OBJECTIVE


To increase the business and business capability of its Members.

MEANS

- Integrated Design and Manufacture
- Selection of appropriate materials and process route for any potential product
- Transfer of technology between members and from research to members.

NEPPCO IDM Integrated Design & Manufacture

(Phase 1)

(Phase 2)

(Phase 3)

Plastics Design and Manufacturing Unit

ACTIVITY	PHASE
Techno Economic Assessment (TEA) (NEPPCO member)	Conception
Targeted Research (University)	Conception, Development
Test Marketing (NEPPCO member)	Development
Integrated Design & Manufacture (IDM) (NEPPCO members)	Development, Scale-up
Process & Product Development (University + Companies)	Scale-up
Build up of in-house knowledge bank (University + NEPPCO members)	All phases

Plastics Design & Manufacturing Unit (PDMU):

Record over 18 months

Ideas submitted to PDMU (two thirds filtered out)	110
Ideas passed to product Conception Phase (12-15, some definitely rejected)	35
Products in Development Phase	11
Products in Scale-up (Production) Phase	2

Typical Products in Development or Production

PRODUCT	FUNCTION	INDUSTRY
Polymer composite Pump Impellers	Replace Phosphor Bronze types	Fishing, marine
Break-a-bolt	Controlled access to bathroom & WCs	Elderly care
Electrical "Acupuncture"	Pain alleviation	Medical electronics
Polyethylene ¹ / ₂ " and ³ / ₄ " continuous sheaths	Lining existing domestic pipes	Water
Fibre reinforced polypropylene bobbins	Hold yarn for dyeing	Textile
Fibre reinforced polypropylene filters	Remove particles from hot water and acid flows	Chemicals
Statpad	Static charge dissipation	Office equipment, auto, domestic

Plastics Design & Manufacturing Unit:

Estimated returns over 21/2 years

Man years of employment	approx. 200
Total Added Value*	approx. £6M

From

Conception phase cost approx. £100K

Development phase cost

approx. £600K

(3 Design + 4 Admin years)

- $M_V \sim 9$
- M_L ~ 30

* Assumes 10 year product life

Schemes of Support for

Scheme	Activity	Approx Annual cost	
Teaching Company	Process and Product Development	£12M	
Engineering Research Council*	Precompetitive Research	£100M	
Structural Funds Priority 2	Mainly support BICs; Technology Advice Networks; IT Networks	£12M in Northwest Objective 2 area	
(University Basic Research £900)			
(Manufacturing Industry R&D £5,400M)			

Research and Innovation compared

* i.e. the Engineering part of EPSRC.